Transcriptional activators in yeast
نویسندگان
چکیده
Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested approximately 6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix-loop-helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2).
منابع مشابه
Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle
Genome-wide location analysis was used to determine how the yeast cell cycle gene expression program is regulated by each of the nine known cell cycle transcriptional activators. We found that cell cycle transcriptional activators that function during one stage of the cell cycle regulate transcriptional activators that function during the next stage. This serial regulation of transcriptional ac...
متن کاملDifferent upstream transcriptional activators have distinct coactivator requirements.
Activated transcription by RNA polymerase II (Pol II) requires coactivators, one of which is the SRB/mediator. Whereas Srb4, an essential subunit of the SRB/mediator, is broadly required for Pol II transcription in yeast, we have shown that it is dispensable for the transcriptional activation of some genes. Here, we show that transcriptional activation by different natural activators, and by ar...
متن کاملTranscriptional enhancement by acidic activators
Transcriptional regulatory mechanisms are fundamentally similar in eukaryotic organisms [1,2]. Components of the RNA polymerase II (Pol II) machinery are highly conserved and, in some cases, functionally interchangeable. Transcriptional activators with similar DNA-binding specificities are present from yeast to human, and acidic activation domains stimulate transcription across a wide range of ...
متن کاملTranscriptional activation by artificial recruitment in mammalian cells.
We show that the typical "nonclassical" activator, which comprises a fusion protein bearing a component of the transcriptional machinery fused to a DNA-binding domain, activates transcription in mammalian cells only weakly when tested with an array of promoters. However, as found in analogous "artificial recruitment" experiments performed in yeast, these activators work synergistically with "cl...
متن کاملACR1, a yeast ATF/CREB repressor.
Members of the mammalian ATF/CREB family of transcription factors, which are associated with regulation by cyclic AMP and viral oncogenes, bind common DNA sequences (consensus TGACGTCA) via a bZIP domain. In the yeast Saccharomyces cerevisiae, ATF/CREB-like sequences confer either repression or activation of transcription, depending on the promoter context. By isolating mutations that alleviate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006